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ABSTRACT: The main aim of this study was the prediction if environmental indices of tobacco production in
north of Iran. Data were collected randomly from 90 farms in Mazandaran province by face to face
questionnaire method. Initially, Life cycle assessment (LCA) methodology was developed to assess all the
environmental impacts associated with tobacco cultivation in the studied area. The ten impact categories
including abiotic depletion, global warming potential, ozone layer depletion potential, human toxicity
potential, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity potential,
photochemical oxidation, acidification potential and eutrophication potential were selected as target outputs.
Farmgate and one ton of harvested tobacco were chosen as system boundary and functional unit. To find the
best topology, several ANN models with different number of hidden layers and neurons in each layer were
developed. To assess the best performance, a topology with highest coefficient of determination (R2), lowest
root mean square error (RMSE) and mean absolute error (MAE) was selected as optimum structure.
Accordingly, ANN model with 8-20-10 structure showed the best performance. Evaluation of the results
revealed that the developed ANN model (8-20-10structure) appears to be appropriate tool in predicting
environmental indices of tobacco production in the studied region.
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INTRODUCTION

Tobacco (Nicotiana tabacum L.) is an important crop
plant (Davis and Nielsen 1999) and a member of the
nightshade (Solanaceae) family which is one of the
largest and most diverse within the angiosperms. This
family includes 3,000- 4,000 species (Olmstead et al.
2008), of which a considerable number are of major
economic importance as crop, vegetable or ornamental
species throughout the world such as potato (Solanum
tuberosum), tomato (Solanum lycopersicum), egg plant
(Solanum melonena), pepper (Capsicum species) and
Petunia (Petunia × hybrida) (Mueller et al. 2005).
Tobacco is one of the most valuable agricultural and
industrial products that is produced in over 100
countries in the world with different climatic conditions
and plays an important role in the economy of them
(Tso, 1990). Although tobacco is counted as an
important industrial plant in the world, it has not been
paid much attention by researchers because of its
negative aspect in cigarette production. Nevertheless,
tobacco has different other usage. For  instance,
nicotine  extraction  is  carried  out  from  this  plant  in
a large scale and tobacco is also used as a model plant
in biotechnology (Chawla, 2003).

Tobacco has 4211884 hectares under cultivation in the
world and crop produced in this area is 7461994 tons
per year, while it has 12230 hectares under cultivation
in Iran and 19232 tons production per year. Largest
tobacco producers in the world are China, India, Brazil
and the United States of America, while Iran ranks 33
in the world in terms of tobacco production (FAO,
2012). Carbondioxide is the main contributor to
greenhouse gases released into the atmosphere and
there is a significant correlation between agricultural
production, energy use and CO2 emissions (Nabavi-
Pelesaraei et al., 2014a). Life-cycle assessment (LCA)
is a method of evaluating the environmental effects
associated with any given activity, beginning with the
initial gathering of raw materials from the earth to the
point at which all residuals are returned to the earth.
Greater environmental awareness among consumers
over the past decade has sharply increased thenumber
of organizations conducting LCA studies (Romero-
Gámez et al., 2012). The main applications of LCA are
in: 1) analyzing the origins of problems related to a
particular product; 2) comparing improvement variants
of a given product; 3) designing new products; and 4)
choosing between a numbers of comparable products
(Guinée et al., 2002).
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An Artificial Neural Network (ANN) is an information
processing paradigm that is inspired by the way
biological nervous systems, such as the brain, process
information.  ANNs have been applied when there is no
theoretical evidence about the functional forms.
Therefore, ANNs are data-based, rather than model-
based. The key element of this paradigm is the novel
structure of the information processing system. It is
composed of a large number of highly interconnected
processing elements (neurons) working in unison to
solve specific problems (Ghodsi et al., 2012). ANN can
learn the complex transport processes of a system from
given inputs and observed outputs, serving as an
instrument for universal function approximation. The
basic  advantage  of  ANN  is  that it  does  not  need
any mathematical model  since  an  ANN  learns  from
examples and recognizes patterns in a series of input
and output data without any prior assumptions about
their  nature  and  interrelations  (Nourbakhsh et  al.,
2014).In the recent years, many studies considered to
environmental impacts assessment and their modelling
by intelligence methods. For example, Khoshnevisan et
al. (2013) analyzed the environmental impact
assessment and economic indices of open field and
greenhouse strawberry production. Nabavi-Pelesaraei et
al. (2013) modeled the greenhouse gas emission of
eggplant production by ANN. In another study, Nabavi-
Pelesaraei et al. (2014b) developed ANN model for
modelling of CO2 emissions in watermelon production
in Guilan province of Iran. Sadeghzadeh et al. (2015)
investigated the modeling of environmental impacts of
eggplant production by ANN.
Based on the literature, there has been no study on
environmental emissions modelling for tobacco
production with respect to input emitter flow using
ANN. The purpose of this study was to model field
emissions of tobacco production in different impact
categories. ANNs used for prediction the environmental
indices of this production in Mazandaran province of
Iran.

MATERIALS AND METHODS

A. Study area
This study was conducted in Mazandaran province.
Mazandaran is located in north of Iran. It is located
between the latitudes 35-47' and 36-35' N and
longitudes 50-34' and 54-10' E and has 1.46 percent of
the country's total area (Anon, 2013).Initial data,
including agricultural practices, machinery operations,
infrastructures, input materials, and energy carriers,
were obtained using questionnaires. To determine the
sample size formula proposed by Cochran was used
(Romero et al., 2012):
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where n is the required sample size, N is the number of
tobacco producers in target population, S is the standard
deviation, t is the t value at 95% confidence limit
(1.96), and d is the acceptable error. As a result, 90
farms were randomly selected for questionnaires.
B. Life cycle assessment
Life cycle assessment follows procedure provided by
ISO standards and comprised of four phases: 1) goal
and scope definition; 2) inventory analysis; 3) impact
assessment; and 4) interpretation (Khoshnevisan et al.,
2013).
Goal and scope definition: In the stage of goal and
scope definition the intention of the research,
anticipated product of the study, system boundaries,
and suppositions are all clarified. Setting boundaries
and defining the specific lifecycle systems being
studied are essential for any LCI or LCA study
(Boguski et al., 1996). The purpose of this study was to
appraise the environmental performance of tobacco and
the environmental impacts related to the use of energy
sources, water and raw materials.
Defining a meaningful boundary is very important
because the environmental problems of agricultural
systems can maintain during postharvest processes
when products are taken out of fields. If the farm gate
be defined as the system boundary differences in
emissions due to transport and processing of products
have been ignored. Additionally, effect of differences in
the end use of the product and its by-products on net
environmental impacts are also ignored. In this study,
due to unavailability of complete set of data, farm
emissions are considered and it is assumed that all the
emissions were related to the input materials which
used in tobacco cultivation in the farms. For instance,
no significance was attached to transportation. All
direct and indirect field emissions were calculated as
the proposed method by Nemecek and Kagi (2007).
The impact categories used in this study are listed in
Table 1. The CML 2 baseline 2000 developed by the
Centre of Environmental Science of Leiden University
was used as an impact-evaluation method
(Khoshnevisan et al., 2013). The emphasis should be
laid on the fact that this baseline does not encompass
some impact categories like land use, water use, etc.
For the environmental impacts analysis of the systems
under study, the functional unit adopted was 1 ton of
harvested tobacco.
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Table 1: Environmental impact categories and measurement units for each category.

Impact categories Nomenclature Units

Abiotic depletion AD kg Sb eq.
Global warming potential GWP kg CO2 eq.
Ozone layer depletion potential ODP kg CFC-11 eq.
Human toxicity potential HTP kg 1,4-DB eq.
Fresh water aquatic ecotoxicity FAE kg 1,4-DB eq.
Marine aquatic ecotoxicity MAE kg 1,4-DB eq.
Terrestrial ecotoxicity potential TEP kg 1,4-DB eq.
Photochemical oxidation PO kg C2H4 eq.
Acidification potential AP kg SO2 eq.
Eutrophication potential EP kg PO4

3- eq.

Inventory analysis: Inventory analysis is considered
one of the most important stages of an LCA since the
stages that follow will be influenced by its results
(Allen and Rosselot, 1997). The outcomes of this stage
are utilized in the life cycle impact assessment (LCIA).
In this stage input materials, energy flows and
assumptions considered in the LCI are elaborated. The
detailed quantitative data for tobacco production
systems upon which the analysis was based on are
summarized in Table 2. The application of chemical
fertilizers is responsible for several direct emissions as
followings: ammonia to air, nitrate leaching to
groundwater, phosphorus to water, nitrous oxide (N2O)
to air, and NOx to the air. Among the various
methodologies developed to estimate direct emissions
of chemical fertilizers, procedures from Brentrup et al.
(2000), EPA (1995) and Eggleston et al. (2006) were
used in this study.

The guidelines issued by Eggleston et al. (2006) were
used in estimating the emissions of nitrous oxide (N2O)
to the air. Accordingly, the application of each 100 kg
of N-based fertilizer is assumed to be responsible for
emitting 1.25 kg of N2O into the air. The emissions of
NOx were assumed to be 2% and NH3 emissions 8% of
the total amount of N-based fertilizers applied
(Galloway et al., 1995). Likewise, it was assumed that
30% of total N fertilizers leached from the soil profile
as nitrate (Erickson et al., 2001). The use of diesel fuel
and manure causes greenhouse gas (GHG) emissions.
Greenhouse gases cause global warming potential and
are expressed by kilogram Carbon dioxide equivalent
(kg CO2eq). Extraction of 1 MJ energy from diesel fuel
leads to 0.074 kg emission of carbon dioxide equivalent
into the air. Also, use of 1 ton manure leads to the
release of 0.005 kg CO2 eq into the atmosphere
(Mohammadi et al., 2014).

Table 2: Life cycle inventory data for tobacco production.

Average (unit per ha)UnitsItems

A. Inputs
116.2kg1. Machinery
45.5L2. Diesel fuel

kg3. Chemical fertilizer
52.2(a) Nitrogen
26.8(b) Phosphate (P2O5)
27.2(c) Potassium (K2O)
2.2kg4. Pesticide

150.59kWh5. Electricity
2980kg6. manure

B. Output
1796.5kgTobacco

kgC. Emissions
2.2696kg1. NOx (emission to air)
1.4185kg2. N2O (emission to air)
9.8784kg3. NH3 (emission to air)
189.61kg4. CO2 (emission to air)
34.044kg5. NO3- (emission to water)

0.07kg6. P (emission to water)



Ostadkelayeh, Rajabipour and Khanali 1263

Impact assessment: The aim of the Life cycle impact
assessment (LCIA) is to evaluate environmental
impacts of the system using the set of results from the
inventory analysis within the framework of the goal and
scope of the study. According to ISO 14044, LCIA
proceeds through four steps: 1) selection of impact
categories and classification (mandatory); 2)
characterization (mandatory); 3) normalization
(optional); and 4) weighting (optional). These four steps
have been developed in a number of distinctive
methodologies including Ecoindicator 99, ReCiPe
2008, and CML developed in The Netherlands, the
EPS2000 method developed in Sweden, EcoPoints and
EPS 2000 developed in Switzerland and so forth. A
literature review revealed that CML 2 baseline 2000
V2.05/world method developed by the Institute of
Environmental Science of Leiden University (PRé
Consultants, 2013).
Artificial neural networks (ANN): To model
environmental impacts, finding the appropriate
independent variables was the first step of model
creation. Accordingly, all relevant variables and their
correlations were studied. Variables were selected on
the basis of having no significant correlation between
them, although there should be a high correlation
between inputs and emissions. The sample size used in
this study was 90 farms. Embedded inputs (including
machinery, diesel fuel, nitrogen, phosphate, potassium,
pesticides, electricity and manure) were chosen as
inputs while the ten impact categories were selected as
outputs of the model. From 90 units, 68 units were
considered as training and 22 units were as testing.
These values were selected based on principles of
ANN. The election of units was randomized from all
samples. Several structures were evaluated using the
experimental data to determine the best predicting
model by the network. The number of neurons was
determined for input and output layer based on number
of inputs and outputs for watermelon production. Also,
one and two hidden layers were applied for ANN
modeling and according to the best results, one of them
was proposed for modeling. In this study, Levenberg-
Marquardt learning Algorithm was used for training
ANNs. The Levenberg-Marquardt algorithm is the most
widely used optimization algorithm. It outperforms
simple gradient descent and other conjugate gradient
methods in a wide variety of problems (Nabavi-
Pelesaraei et al., 2014b).
The input weight matrixes are made up from all the
links between input layers and hidden layers and the
output weight matrix comprises all the links between
the hidden layers and the output layers. Weight (w),
which controls the propagation value (x) and the output
value (O) from each node, is modified using the value

from the preceding layer according to Eq. (2) (Zhao et
al., 2009):

( )∑+= ii xwTfO
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Where 'T' is a specific threshold (bias) value for each
node. 'f' is a non-linear sigmoid function, which
increased uniformly.
The error was calculated at the end of training and
testing processes based on the differences between
targeted and calculated outputs. The back-propagation
algorithm minimizes an error function defined by the
average of the sum square difference between the
output of each neuron in the output layer and the
desired output.
The error function can be expressed as (Nabavi-
Pelesaraei et al., 2014b):
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Where 'p' is the index of the p training pairs of vectors,
'k' the index of an element in the output vector, 'zpk' the
kth element of the output vector when pattern p is
presented as input to the network and 'tpk' is the kth
element of the pth desired pattern vector.
Mean square error (MSE) is very applicable to compare
different models; it illustrates the network's ability to
predict the accurate output. The MSE can be written as
(Safa and Samarasinghe, 2011):
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Where 'ti' and 'zi' are the actual and the predicted output
for the ith training vector, and 'N' is the total number of
training vectors.
Mean absolute percentage error (MAPE) between the
predicted and actual values and coefficient of
determination (R2) were calculated using the following
equations (Tang and Yin, 2012):
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Where 'ti' and 'zi' are the predicted and actual output for
the ith farmers, respectively.
Basic information on inputs of tobacco production was
entered into Excel 2013 spreadsheets and the Matlab
(R2014a) software package.
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RESULTS AND DISCUSSION

A. Interpretation of LCA results
A summary of the environmental impacts, assessed on
the basis of selected functional unit is shown in Table 3.
Farm emissions encompassed emissions to air, water
and soil from the field. After calculating all emissions,
all of them were converted into the reference substances
according to each impact category (characterization
factors). For instance in the impact category of GWP all
the emissions were converted to CO2 equivalent
according to CML guidelines (Guinée et al., 2002). The
results revealed that total GWP was calculated as 655
kg CO2 eq. Other impacts including AD, ODP, HTP,
PO, AP and EP were computed as 2.2 kg Sb eq.,

0.0000319 kg CFC-11 eq., 0.286 kg C2H4 eq., 10.4 kg
SO2 eq., and 4.54 kg PO43- eq., respectively.
Sadeghzadeh et al. (2015) in their study on eggplant
production computed impact categories GWP, AD,
ODP, HTP, PO, AP and EP as 252.99 kg CO2eq, 0.003
kg Sb eq., 1.54E-05 kg CFC-11 eq., 0.13 kg C2H4eq.,
1.23 kg SO2eq., and 3.84 kg PO43-eq., respectively.
Negative value of FAE indicates that the production of
tobacco not only has no negative effect in this impact
category but also reduce environmental loads in this
category. Negative value of FAE is due to application
of manure in tobacco production. Generally, application
of manure reduce environmental loads in all impact
categories except PO (Fig. 1).

Table 3: Environmental impact categories and their value for selected functional unit (1 ton of tobacco
production).

Impact categories Units Values

Abiotic depletion kg Sb eq. 2.2
Global warming potential kg CO2eq. 655
Ozone layer depletion potential kg CFC-11 eq. 0.0000319
Human toxicity potential kg 1,4-DB eq. 229
Fresh water aquatic ecotoxicity kg 1,4-DB eq. -34.3
Marine aquatic ecotoxicity kg 1,4-DB eq. 202000
Terrestrial ecotoxicity potential kg 1,4-DB eq. 1.02
Photochemical oxidation kg C2H4eq. 0.286
Acidification potential kg SO2eq. 10.4
Eutrophication potential kg PO43-eq. 4.54

Fig. 1. Contribution of inputs to environmental impact categories.
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The distribution of emissions of each input is
demonstrated in Fig. 1. The results indicated that: 1)
machinery had the highest share of emission in the
impact categories AD, HTP, FAE, MAE, TEP, and PO;
2) on-farm emissions had the highest share of emission
in the impact categories AP, EP, and GWP; and 3)
pesticides had the highest share of emission in the
impact category ODP. The import of non-standard
machinery was the main reason of machinery share in
total emissions. In another hand, irregular consumption
of chemical fertilizers (especially nitrogen) and
pesticides caused high share of on-farm emissions and
pesticides in some impact categories. The lack of true
pattern for chemical products application and improper
pricing policy (for example low price of chemical
fertilizer and pesticides) was main problems in the
agricultural system of the study area. Accordingly, true
application of farm machinery and chemical products
can significantly reduce environmental impacts of
tobacco production.

B. ANN results
In this study, several multi-layer perceptron (MLP)
networks were designed, trained and generalized, using
the Matlab (R2014a) software package. The Levenberg-
Marquardt networks were trained using the training sets
formed by including 75 percent of data. The
Levenberg-Marquardt algorithm were tested applying
the testing datasets including 22 samples. The
experimental tests consisted of seven inputs and ten
outputs. In this paper, an input layer with eight input
variables, one hidden layer with twenty neurons and an
output layer with ten outputs variables gained the best
results (8-20-10 structure). The highest R2 was
calculated by the best topology for ten environmental
impacts categories (Table 4). Also, this topology had
the lowest value of RMSE and MAPE, indicating that
the predicted ten environmental impacts by the ANN
model tend to follow the corresponding actual ones
quite closely.

Table 4. Network performance of environmental prediction for the best topology.

Environmental indices R2 RMSE MAPE

Abiotic depletion 0.955 0.075 0.066
Global warming potential 0.951 0.063 0.100
Ozone layer depletion potential 0.926 0.073 0.060
Human toxicity potential 0.907 0.067 0.051
Fresh water aquatic ecotoxicity 0.951 0.088 0.101
Marine aquatic ecotoxicity 0.932 0.032 0.037
Terrestrial ecotoxicity potential 0.906 0.072 0.094
Photochemical oxidation 0.929 0.088 0.101
Acidification potential 0.951 0.042 0.064
Eutrophication potential 0.977 0.054 0.100
Abiotic depletion 0.955 0.075 0.066

CONCLUSION

In this study, the ability of ANN model to predict the
environmental indices of tobacco production in
Mazandaran province in Iran was investigated. Input
variables used in ANN models were machinery, diesel
fuel, nitrogen, phosphate, potassium, pesticides,
electricity and manure while ten environmental impact
categories were selected as output parameters. The best
topology consisted of an input layer with eight input
variables, one hidden layer with twenty neurons in it,
and an output layer with 10 output variables (8-20-10
structure). From the results obtained, the developed
model gave satisfactory predictions in the studied
region and appears to be an appropriate tool for

prediction of environmental indices of tobacco
production.
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